

QUIZ BANK

ESWAR COLLEGE OF ENGINEERING: NARASARAOPET

Approved by AICTE, New Delhi., Affiliated to JNTUK, Kakinada
Kesanupalli Village, Narasaraopet – 522 601,
Palnadu Dist. A.P.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

YEAR/ SEM : III-I

REGULATION: R20

COURSE NAME:DESIGN AND ANALYSIS OF ALGORITHMS ACADEMIC YEAR: 2022-23

COURSE CODE: CSE3102

COURSE COORDINATOR : VUYYURU MADHAVI

QUIZ BANK

001. _____ refers to the task of determining how much computing time and storage an algorithm requires

B

- A Validate Algorithms B Analyze algorithms
- C Devise Algorithms D Test Algorithms

002. Which of the following condition belongs to termination of an algorithm after a limited number of steps

B

- A Definiteness B Finiteness
- C Infiniteness D Effectiveness

003. Which of the following not a criteria for all types of algorithms. **C**

- A Definiteness B Finiteness
- C Infiniteness D Effectiveness

004. The purpose of the _____ is to assures that this algorithm will work correctly independently of the issues concerning the programming language it will eventually be written in.

D

- A Performance analysis B Debugging
- C Deploying D Validation

005. _____ is the process of executing programs on sample data sets to determine whether faulty results occur and, if so, to correct them

A

- A Debugging B Profiling
- C Validation D program proving

006. The measure of the longest amount of time possibly taken to complete an algorithm is expressed as ____.

D

- A Little-O B Little-Omega
- C Big-Omega D Big-O

007. Find the value returned by the following AB algorithm Algorithm AB(A, n)//A is an array

of size n { Result:=A[1]; for i :=2 to n do if A[i] >Result then Result:=A[i];return Result; }

A

- A returns the maximum of n given numbers
- B returns the minimum of n given numbers
- C returns the average of n given numbers

001. _____ refers to the task of determining how much computing time and storage an algorithm requires B
 A Validate Algorithms B Analyze algorithms
 C Devise Algorithms D Test Algorithms

002. Which of the following condition belongs to termination of an algorithm after a limited number of steps B
 A Definiteness B Finiteness
 C Infiniteness D Effectiveness

003. Which of the following not a criteria for all types of algorithms. C
 A Definiteness B Finiteness
 C Infiniteness D Effectiveness

004. The purpose of the _____ is to assures that this algorithm will work correctly independently of the issues concerning the programming language it will eventually be written in. D
 A Performance analysis B Debugging
 C Deploying D Validation

005. _____ is the process of executing programs on sample data sets to determine whether faulty results occur and, if so, to correct them A
 A Debugging B Profiling
 C Validation D program proving

006. The measure of the longest amount of time possibly taken to complete an algorithm is expressed as _____. D
 A Little-O B Little-Omega
 C Big-Omega D Big-O

007. Find the value returned by the following AB algorithm Algorithm AB(A, n)//A is an array of size n { Result:=A[1]; for i :=2 to n do if A[i] >Result then Result:=A[i];return Result; } A
 A returns the maximum of n given numbers B returns the minimum of n given numbers
 C returns the average of n given numbers D returns the sum of n given numbers

008. The following statement comes under _____ type of category a:=a + b*e; C
 A Declaration of variables B Loop statement
 C Assignment of expression D Conditions statements

009. In algorithm specification blocks are indicated with ____ braces D
 A Parenthesis braces() B Square braces[]
 C angular braces<> D Matching braces{}

010. The following example comes under _____ data type node= record {Datatype1: data1; Datatype2data2; node *link; } A
 A Compound B Derived
 C Simple D Ternary

011. The _____ of an algorithm is the amount of computer time it needs to run to completion B
 A Space Complexity B Time complexity
 C Factor Complexity D Eigen complexity

012. The amortized complexity to perform insert, delete, and search operations in splay trees is B
 A $O(n^3)$ B $O(\log n)$
 C $O(n^2)$ D $O(n)$

013. _____ is defined as a set of well-defined instructions used to accomplish a particular task. A
 a
 A Algorithm B Function
 C Program D Procedure

014. _____ is a complexity of an algorithm is the amount of memory it needs to run to completion A

A Space Complexity B Time complexity
 C Factor Complexity D Eigen complexity

015. O(1) to mean a computing time is **B**
 A Linear B Constant
 C Exponential D Cubic

016. Potential function method is the technique that performs an amortized analysis based on _____. **D**
 A Financial model B Computational model
 C Algorithm analysis D Energy model

017. Consider the experiment of throwing three coins, how many possible outcomes will occur **C**
 A 2 B 6
 C 8 D 10

018. If $f(n) = a_m n^m + a_1 n + a_0$, then $f(n) = O(\underline{\hspace{2cm}})$ **C**
 A $O(n)$ B $O(m)$
 C $O(n^m)$ D $O(m^n)$

019. Which of the following is not a method to arrive at amortized costs for operations are **C**
 A Aggregate Method B Potential Method
 C Actual Cost Method D Accounting Method

020. The only requirement is that the sum of the amortized complexities of all operations in any sequence of operations be _____ to their sum of the actual complexities **B**
 A Less than or equal to B Greater than or equal to
 C Less than D Greater than

021. Which of the following is not an algorithmic approach **D**
 A Dynamic Programming B Greedy Approach
 C Divide and Conquer D 0/1 knapsack

022. $O(n)$ is _____ **D**
 A linear complexity B factorial complexity
 C exponential time D Polynomial complexity

023. _____ within the limit deals with the behavior of a function for sufficiently large values of its parameter. **A**
 A Asymptotic notation B Big-Oh notation
 C Omega notation D Theta notation

024. _____ is the maximum amount of time an algorithm takes to execute a specific set of inputs. **C**
 A Running time B Average case time complexity
 C Worst case time complexity D Best case time complexity

025. An algorithm that uses random numbers to decide what to do next anywhere in its logic is called _____ **D**
 A Dynamic approach B Greedy approach
 C Dynamic Programming D Randomized Algorithm

026. _____ presents the upper and the lower bound of the running time of an algorithm **A**
 A Theta Notation (-notation) B Omega Notation (-notation)
 C Big-O Notation (O-notation) D Asymptotic notation

027. Two events E1 and E2 are said to be mutual exclusive if and only if _____ existed **A**
 A No common sample points B common sample points
 C Equal sample points D At least one sample point

028. A _____ is a compact, informal, and environment-independent description of a computer programming algorithm. **C**
 A Stack B Queue
 C Psuedocode D Non-linear data structure

029. $O(X)$ is _____ **C**

A linear complexity B factorial complexity
 C exponential time D Polynomial complexity

030. Towers of Hanoi is a famous problem that has a recursive solution running in C
 A $O(n^3)$ B $O(n^2)$
 C $O(2^n)$ D $O(n^2)$

031. Flip a coin four times and then the sample space consists of _____ sample points A
 A 16 B 8
 C 12 D 24

032. $(\log n)$ is? B
 A constant asymptotic notations B logarithmic asymptotic notations
 C polynomial asymptotic notations D quadratic asymptotic notations

033. The probability of the sum of two faces (six faced dice) is 10 C
 A $1/36$ B $2/36$
 C $3/36$ D $10/36$

034. Tossing three coins, The probability of the event {HHT, HTT, TTT} is _____ B
 A 0.1245 B 0.25
 C 0.375 D 0.5

035. The number of possible outcomes generated by rolling two (six-faced) dice D
 A 6 B 12
 C 24 D 36

036. Worst Case indicates maximum time required for program execution. A
 A Yes B No
 C Can be yes or no D Can not say

037. Asymptotic analysis is _____ bound. B
 A Output B Input
 C Outer D inner

038. _____ is linear asymptotic notations? C
 A (1) B $(\log n)$
 C (n) D $(n \log n)$

039. The Theta notation is the formal way to express _____ of an algorithm 's C
 running time.
 A upper bound B lower bound
 C lower bound and upper bound D None of the above

040. _____ case indicates the minimum time required for program execution. A
 A best case B average case
 C worst case D None of the above

041. _____ analysis, the time of the algorithm is found prior to implementation and time B
 is not in terms of any such time units. Instead, it represents the number of operations
 that are carried out while executing the algorithm.
 A Posteriori analysis B Priori analysis
 C Asymptotic analysis D Symptotic analysis

042. In _____ analysis, algorithm is implemented and executed on certain fixed hardware A
 and software. Then the algorithm is selected which takes the least amount of time to
 execute.
 A Posteriori analysis B Priori analysis
 C Asymptotic analysis D Symptotic analysis

043. The total amortized cost of insertion in the Red-Black Tree is _____. B
 A $O(1)$ B $O(N)$
 C $O(\log N)$ D $O(N \log N)$

044. _____ of an algorithm refers to defining the mathematical foundation/framing of B
 its run-time performance.
 A Symptotic analysis B Asymptotic analysis
 C PosteriorAnalysis D PrioriAnalysis

045. _____ is the time complexity in decreasing the node value in a binomial heap. C

A $O(1)$ B $O(N)$
 C $O(\log N)$ D $O(N \log N)$

046. $O(n \log n)$ is known as

 A linear complexity B logarithmic complexity
 C loglinear complexity D constant complexity

047. Divide and Conquer principle is naturally expressed by

 A Non Recursive algorithm B Recursive algorithm
 C Iterations D Object Oriented

048. Find the order of best case time complexities

 A $O(n), O(1), O(\log n), O(n \log n)$ B $O(1), O(\log n), O(n \log n), O(n)$
 C $O(\log n), O(n \log n), O(n), O(1)$ D $O(1), O(\log n), O(n), O(n \log n)$

049. _____ types of asymptotic notations existed in analyzing algorithms

 A 1 B 2
 C 3 D 4

050. _____ of the following is case does not exist in time complexity

 A Best Case B Worst Case
 C Average Case D Null Case

051. A defective chessboard is a $2^k \times 2^k$ board of squares with _____ defective square

 A Exactly one defective square B Exactly two defective squares
 C Exactly three defective squares D Any number of defective squares

052. In the defective chess board problem, are required to tile a defective chessboard using

 A triangle B Square
 C Triominoes D orientations

053. Time Complexity of Binary Search Algorithm for unsuccessful searches in the approach of divide and conquer

 A $O(n)$ B $O(n \log_2 n)$
 C $O(\log_2 n)$ D $O(n^2 \log_2 n)$

054. Best case complexity for successful searches in binary search tree using divide and conquer approach

 A $O(n)$ B $O(1)$
 C $O(\log n)$ D $O(n \log n)$

055. The following recurrence relation using recursion tree method shows that $T(n) =$
 $2T(n/2) + n$

 A A problem of size n will get divided into 2 sub-problems of size $n/2$. B A problem of size n will get divided into 2 sub-problems of size n .
 C A problem of size $n/2$ will get divided into 2 sub-problems of size n D A problem of size $n/4$ will get divided into 2 sub-problems of size n

056. The auxiliary space complexity of merge sort

 A $O(1)$ B $O(\log n)$
 C $O(n)$ D $O(n \log n)$

057. Choose the correct code for merge sort.

 A


```
Algorithm merge_sort(int arr[], int left, int right)
{
  if (left > right)
  {
    int mid = (right-left)/2;
    merge_sort(arr, left, mid);
    merge_sort(arr, mid+1, right);

    merge(arr, left, mid, right); //function to merge sorted arrays
  }
}
```


 B


```
Algorithm merge_sort(int arr[], int left, int right)
{
  if (left < right)
  {
    int mid = left-(right-left)/2;
    merge_sort(arr, left, mid);
    merge_sort(arr, mid+1, right);

    merge(arr, left, mid, right); //function to merge sorted arrays
  }
}
```


 C

 D

```

Algorithm merge_sort(int arr[], int left, int right)
{
    if (left < right)
    {
        int mid = left + (right-left)/2;
        merge(arr, left, mid, right); //function to merge sorted arrays
        merge_sort(arr, left, mid);
        merge_sort(arr, mid+1, right);
    }
}

```

```

Algorithm merge_sort(int arr[], int left, int right)
{
    if (left < right)
    {
        int mid = (right-left)/2;
        merge(arr, left, mid, right); //function to merge sorted arrays
        merge_sort(arr, left, mid);
        merge_sort(arr, mid+1, right);
    }
}

```

058. The average case time complexity of merge sort A

A $O(n \log n)$ B $O(n^2)$
 C $O(n^2 \log n)$ D $O(n \log n^2)$

059. The following recurrence relation using recursion tree method shows that $T(n) = T(n/5) + T(4n/5) + n$ A

A A problem of size n will get divided into 2 sub-problems- one of size $n/5$ and another of size $4n/5$.
 C A problem of size n will get divided into 2 sub-problems- one of size $4n$ and another of size $4n/5$

B A problem of size n will get divided into 2 sub-problems- one of size $n/5$ and another of size n.
 D A problem of size n will get divided into 2 sub-problems- one of size $4n/5$ and another of size n

060. Merge sort uses which of the following technique to implement sorting? C

A backtracking B greedy algorithm
 C divide and conquer D dynamic programming

061. Which of the below-given sorting techniques has the highest best-case runtime complexity. B

A Quick sort B Selection sort
 C Insertion sort D Bubble sort

062. A sorting technique is called stable if: B

A It takes $O(n \log n)$ time.
 C It uses a divide and conquer approach.
 B It maintains the relative order of occurrence of the same elements.
 D It takes $O(n)$ space.

063. In quick sort, for sorting n elements, we choose the $n/4^{\text{th}}$ smallest element as a pivot with an $O(n)$ time algorithm. What is the worst-case time complexity for the quick sort B

A (n) B $(n \log n)$
 C (n^2) D $(n^2 \log n)$

064. _____ is the worst case time complexity of a quick sort algorithm? C

A $O(N)$ B $O(N \log N)$
 C $O(N^2)$ D $O(\log N)$

065. _____ pivoting improve the expected or average time complexity to $O(N \log N)$. D

A First element B last element
 C middle element D random element

066. Which of the following algorithms is NOT a divide & conquer algorithm by nature? D

A Quick Sort B Merge Sort
 C Binary Search D Heap Sort

067. More than one feasible solution is generated in _____ approach A

A Greedy B Divide and Conquer
 C Dynamic Programming D Iterative

068. What is the worst case complexity of binary search using divide and conquer master theorem? B

A $O(n \log n)$ B $O(\log n)$

C $O(n)$ D $O(n^2)$

069. Which is the best sorting algorithm to use if the elements in the array are more than one million in general? C

A Merge sort. B Bubble sort.
 C Quick sort. D Insertion sort.

070. What is the average case time complexity of binary search using recursion? B

A $O(n \log n)$ B $O(\log n)$
 C $O(n)$ D $O(n^2)$

071. Consider a complete graph G with 4 vertices. The graph G has _____ spanning trees. C

A 15 B 8
 C 16 D 13

072. Prims algorithm is _____ type of approach B

A Divide and conquer algorithm B Greedy algorithm
 C Dynamic Programming D Approximation algorithm

073. Which of the following is false in the case of a spanning tree of a graph G ? D

A It is tree that spans G B It is a sub graph of the G
 C It includes every vertex of the G D It can be either cyclic

074. An optimal solution is a feasible solution for which is _____-profit A

A maximized B minimized
 C equal D zero

075. Consider the following instance of the knapsack problem: $n = 3, m = 20, (p_1, p_2, p_3) = (25, 24, 15)$, and $(w_1, w_2, w_3) = (18, 15, 10)$. Find the optimal solution of maximum profit B

A 31 B 31.5
 C 32 D 32.5

076. Optimal merge pattern is a pattern that relates to the merging of two or more _____ files in a single sorted file B

A Unsorted files B Sorted files
 C binary files D character files

077. If we have two sorted files containing n and m records respectively then they could be merged together, to obtain one sorted file in time A

A $O(n+m)$. B $O(n)$.
 C $O(m)$ D $O(m \log n)$

078. Let us consider the given files, f_1, f_2, f_3, f_4 and f_5 with 20, 30, 10, 5 and 30 number of elements respectively. Find the total number of moves required to merge all these files according to the ascending order. C

A 270 B 230
 C 210 D 190

079. _____ is the worst case time complexity of Prims algorithm if adjacency matrix is used? B

A $O(\log V)$ B $O(V^2)$
 C $O(E^2)$ D $O(V \log E)$

080. Consider the files x_1, x_2, x_3 with the length of 30, 20, and 10 records each. The total number of moves required to merge the three files according to the given order A

A 110 B 60
 C 85 D 120

081. In a knapsack problem, if a set of items are given, each with a weight and a value, the goal is to find the number of items that _____ the total weight and _____ the total value. Ans: D

A Minimizes, Minimizes B Maximizes, Maximizes
 C Maximizes, Minimizes D Minimizes, Maximizes

082. With respect to finding the time complexity of Kruskals algorithm, which operation keeps track of the parent pointer until it reaches the root parent? C

A Makeset B Union
 C Find D Merge

083. In the optimal merge pattern, list(L) is represented as a min-heap. and the value in the root is less than or equal to the values of its children ,in this case the time complexity is
 A $O(n^2)$ B $O(n)$
 C $O(\log n)$ D $O(n \log n)$.

084. In the optimal merge pattern the list is kept in increasing order according to the weight value in the roots and insertion performed on $O(n)$ then total time complexity is
 A $O(n^2)$ B $O(n)$
 C $O(\log n)$ D $O(n \log n)$.

085. A Huffman code: A = 1, B = 000, C = 001, D = 01, $P(A) = 0.4$, $P(B) = 0.1$, $P(C) = 0.2$, $P(D) = 0.3$ The average number of bits per letter is
 A 8.0 bit B 1.9 bit
 C 2.0 bit D 2.1 bit

086. Finding maximum and minimum numbers from the given set requires _____ no of comparisons in the case of divide and conquer approach when n is power of 2
 A $(3n/2)2$ B $2(n-1)$
 C n^2 D $\log n$

087. Kruskals Algorithm for finding the Minimum Spanning Tree of a graph is a kind of a?
 A Dynamic programming B Divide and Conquer
 C Greedy approach D Adhoc Approach

088. How many printable characters does the ASCII character set consists of?
 A 120 B 128
 C 100 D 98

089. _____ is an application of binary trees with minimal weighted external path length is to obtain an optimal set of codes for messages M_1, M_2, M_{n+1} and each code is binary string that is used for transmission of the corresponding message.
 A A.Single Source shortest path B Huffman coding
 C Binary Search tree D Merge Sort

090. The given graph $G=(V,E)$ is represented as an adjacency matrix. $w[u, v]$ stores the weight of edge (u, v) . The priority queue Q is represented as an unordered list. Let $|E|$ and $|V|$ be the number of edges and vertices in the graph, respectively. Then the time complexity is _____
 A $O(V^3)$ B $O(V^2)$
 C $O(E+V)$ D $O(|E|+|V|*\log|V|)$

091. Which of the following algorithms is the best approach for solving Huffman codes?
 A exhaustive search B greedy algorithm
 C brute force algorithm D divide and conquer algorithm

092. Which of the following is not related to Dijkstras algorithm
 A Dijkstras algorithm works only for connected graphs. B It works for graphs that contain any edges with positive and negative weights.
 C It only provides the value or cost of the shortest paths. D The algorithm works for directed and undirected graphs.

093. Straight MaxMin requires _____ element comparisons in the best, average & worst cases.

```

Algorithm straight MaxMin (a, n, max, min)
// Set max to the maximum & min to the minimum of a [1: n]
{
    Max = Min = a [1];
    For i = 2 to n do
    {
        If (a [i] > Max) then Max = a [i];
        If (a [i] < Min) then Min = a [i];
    }
}

```

A n^2
C n

B $2(n-1)$
D $(3n/2) 2$

094. Which of the following is the most commonly used data structure for implementing Dijkstras Algorithm? D

A Max priority queue B Stack
C Circular queue D Min priority queue

095. Advantage of finding maximum and minimum using divide and conquer method instead of using conditional operators is _____ C

A Less space complexity B Accuracy
C Reduced Time Complexity D Less number of calculation

096. With respect to finding the time complexity of Kruskals algorithm, which operation keeps track of the parent pointer until it reaches the root parent? C

A Makeset B Union
C Find D Merge

097. Merge sort is _____ type of sorting A

A External Sorting B Insertion Sorting
C Internal Sorting D Exponential Sorting

098. Dijkstras Algorithm is used to solve _____ problems. B

A All pair shortest path B Single source shortest path
C Network flow D Sorting

Signature

Signature

PRINCIPAL
ESWAR COLLEGE OF ENGINEERING
Chilakaluripet Road,
Yesanupalli (V), NARASARAO PET (MD)
Palnadu Dist, A.P 522 649